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Sostiene Chiara Valerio che la matematica non abbia alcuna confidenza con la morale – all’errore non riserva
un giudizio valutativo, e lo accoglie come i figli che di solito si amano di più: quelli appunto che sbagliano e
lo fanno con ostinazione e metodo. Per la matematica “l’errore non è difetto morale o caratteristica di una
classe sociale, ma solo uno dei modi per proseguire la ricerca, raddrizzare il procedimento logico o
addirittura cambiarlo” (Chiara Valerio, La matematica è politica, Einaudi 2020, p. 6).

Un’intesa perversa, quella tra il calcolo e l’errore, come una sorta di doppio la cui rinuncia metterebbe uno
dei due sulla strada della sparizione. Questo perché, in matematica, l’errore non è mai solo una svista ma un
genere particolarissimo di segnale: indica la strada in una città che diviene mentre la si percorre e si
costruisce via via che la si abita. Perché, dice sempre Valerio, la città della matematica ha la qualità
dell’inesistenza: “[T]utto quello di cui Euclide parla, non esiste. In nessun tempo verbale. […] La matematica
[…] è questa immaginazione che educa all’invisibile, dunque all’amore e ai morti, alle utopie e ai fantasmi”
(Chiara Valerio, Storia umana della matematica, Einaudi 2016, pp. 3-4).

Ma questa predilezione per l’irrealtà non la consegna ad alcun idealismo, nessuna Tlön, i cui metafisici
sacrificano verità e verosimiglianza alla ricerca della meraviglia. All’opposto, la matematica avanza
l’irragionevole pretesa di estrarre il codice segreto di ogni cosa, sottometterla alla sua nozione privilegiata di
vero ed estendere il suo dominio lungo tutto il computo dei suoi numeri, cioè all’infinito. Ed è questa
capacità di sussumere, sottomettere, signoreggiare che Ian Stewart esalta in A cosa serve la matematica?
(Einaudi, 2022), un testo che dà conto della singolare, perlopiù inattesa, capacità della matematica di cogliere
con eccezionale puntualità uno spettro di fenomeni che vanno dalla fisica alla sociologia passando per la
biologia e le scienze mediche. Di più: quel che l’autore britannico espone nei vari capitoli del libro è un
insieme di applicazioni la cui natura ha il carattere dell’incontro imprevisto.

Teorie nate con certe finalità, in specifici contesti, dettate da particolari contingenze, sono risultate decisive
in scenari affatto diversi. Ad esempio, i metodi di simulazione Monte Carlo, sviluppati nell’alveo del
Progetto Manhattan, sono stati adoperati per fornire possibili soluzioni al problema del gerrymandering e
definire così criteri più equi sulla composizione dei collegi elettorali. Ancora: la teoria del caos, la cui prima
formulazione si deve a Henri Poincaré per studiare l’evoluzione di un sistema a tre corpi, ha fornito algoritmi
dirimenti per le industrie del filo e delle molle nello stimare la qualità dei materiali impiegati. Infine,
l’introduzione dei numeri complessi, che assegnano radici quadrate ai numeri negativi e la cui origine è
situata nell’Italia rinascimentale, si è rivelata imprescindibile per la meccanica quantistica, l’unica teoria
fisica che oggi possa pretendere di penetrare i segreti della materia.

Non stupisce allora che, con un’efficienza che sfiora l’“irragionevole” (p. 6), la matematica costituisca
ancora un labirinto ostile per profani ed esperti di altra formazione. La proposta di Stewart – non sempre
chiara, sia detto – potrebbe definirsi come uno strumentalismo sempre pronto all’agguato: la matematica
consiste in una serie di strumenti che riescono a svincolarsi dal contesto d’origine, e, senza particolari opere
di mediazione, ma anzi, per così dire, con un ingresso da guitto, si accomoda in altri contesti per offrire
intuizioni altrimenti inottenibili. Una specie di capacità di impollinazione guidata dall’istinto di chi al
momento sembra incapace di trovare una soluzione e se la trova nella nota di un diario di pochi anni prima,
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più probabilmente un secolo.

Questo perché la matematica non è uno strumento di ottica, che migliora la visione di un’immagine, ma
estrae il codice di un fenomeno, lo piega al suo linguaggio e lo rende fruibile in un modo che si può
permettere solo la radicale autonomia del ragionamento matematico. Prima di addentrarci nelle maglie
intricate di una disciplina la cui singolare specificità è quella di estrarre codici per un reale da cui pure
rivendica autonomia, sarà interessante presentare due applicazioni discusse nel testo che a me paiono
particolarmente indicative.  

Com’è noto, l’attuale città russa Kaliningrad afferiva nel Settecento alla Prussia con il nome di Königsberg:
attraversata dal fiume Pregel, era al tempo costituita da due isole, Kneiphof e Lomse, collegate tra di loro da
un sistema di sette ponti. Più in dettaglio, ognuna delle sponde del Pregel presentava due ponti per Kneiphof
e uno per Lomse, mentre il settimo ponte collegava le due isole. La leggenda vuole che fosse sorto un enigma
tra i cittadini di Königsberg circa la possibilità di passeggiare per la città secondo un percorso che prevedesse
l’attraversamento dei sette ponti una singola volta.

Fu Eulero, che si interessò alla faccenda nel primo Settecento, a trovare le condizioni necessarie e sufficienti
per sciogliere questo dilemma e questioni analoghe e a porre con ciò le basi per la cosiddetta teoria dei grafi.
Un grafo corrisponde a un insieme di punti (detti nodi o vertici) collegati da linee (dette archi o spigoli), volti
a comporre una sorta di rete (p. 78). Eulero dimostrò che il problema dei ponti di Königsberg può essere
riformulato in termini di teoria dei grafi, così dimostrando che l’enigma non ammette soluzioni.





Chi avrebbe mai sospettato nel Settecento che una tecnica volta al tracciamento dei possibili percorsi entro
una rete si sarebbe rivelata cruciale nell’ottimizzare il numero di trapianti di rene, a partire dalla compatibilità
tra donatori e riceventi? Ad oggi, la teoria dei grafi viene adoperata con sistematicità per definire algoritmi
che determinano – sulla base di criteri fissati dalle autorità mediche competenti – l’organizzazione più
efficiente di tali trapianti.

Meno noti saranno invece gli studi condotti, a partire dagli anni Venti del Novecento, su alcuni materiali
magnetici che attraversano particolari transizioni di fase – studi che porteranno alla definizione di un
modello, detto di Ising, che ha aperto un intero settore della fisica matematica.

Secondo la termodinamica – quella vastissima branca della fisica che si occupa delle trasformazioni dei
sistemi, microscopici e macroscopici, a partire da parametri quali calore, temperatura, energia – una
transizione di fase corrisponde a una variazione nelle proprietà fenomenologiche di un certo materiale. Per
fare un esempio più che prossimo all’ordinario, allorché un cubetto di ghiaccio viene esposto alle temperature
tipiche di una giornata estiva, esso tenderà a sciogliersi sino a divenire completamente liquido.

Ecco: stato solido e stato liquido corrispondono a due fasi dello stesso materiale, l’acqua, caratterizzati da
proprietà (volume, energia, temperatura, per citarne solamente alcune) differenti. Analogamente, esistono in
natura dei materiali che a seconda delle particolari condizioni ambientali manifestano proprietà magnetiche
differenti. Meglio ancora, accade che, se la temperatura supera una certa soglia (detta di Curie), il campo
magnetico di tali materiali scompare bruscamente, mentre a temperature inferiori risulta presente. Cosicché le
condizioni ambientali determinano il loro comportamento magnetico. 

L’allora dottorando Ernst Ising venne incaricato dal suo relatore, il noto fisico tedesco Wilhelm Lenz, di
stabilire un modello per capire se tali materiali stessero attraversando una transizione di fase. Ising sviluppò
un primo modello, che verrà raffinato poi nel tempo, teso a spiegare il comportamento di tali materiali. Ora,
scrive Stewart, circa dieci anni fa un matematico americano, Kenneth Golden, notò delle somiglianze
rilevanti tra il modello di Ising per questi materiali in prossimità della temperatura di Curie e le immagini del
ghiaccio marino nell’Artide (pp. 260-261).

Questa regione del mondo, interessata da un fenomeno sempre più irruento di progressiva liquefazione,
subisce oggi quelli che in gergo tecnico vengono definiti stagni di fusione – un fenomeno per cui la
superficie del ghiaccio inizia a popolarsi di piccole aree scure di materiale liquido (l’acqua), la cui capacità di
assorbimento della radiazione luminosa implica un processo a catena di più rapido surriscaldamento della
superficie che se essa fosse completamente ghiacciata. Lo studio sulla geometria e l’evoluzione degli stagni
di fusione rappresenta un tassello fondamentale per le ricerche nell’ambito climatico. Poter mettere a frutto
una tecnica dal consolidato e altissimo importo teorico quale il modello di Ising in problemi legati al
cambiamento climatico rappresenta una delle frontiere più promettenti della fisica matematica
contemporanea. 

Insomma, la capacità di Stewart di seguire i salti della matematica rende il libro molto gustoso. Il suo limite,
forse, è che non si sforza di rintracciare l’origine di questa irragionevole capacità acrobatica. Stewart ne
spiega con ricchezza d’immagini la frequenza, la costanza, l’insostituibilità, ma lascia a bocca asciutta
quando la curiosità del lettore vorrebbe sapere qualcosa, per così dire, di più intimo sulla signora che estrae
codici e s’insinua in ogni spazio.

È quindi un po’ per pigrizia un po’ per devozione che qui richiamo una divinità delle più immediate e
prossime a chi pure del panorama filosofico del Novecento abbia un’idea poco meno che rudimentale,
Ludwig Wittgenstein, autore che mai seppe dare tregua all’ovvio. Con la solita tendenza a imparentare
regola, linguaggio e matematica, egli scrive: “Cerchiamo di parlare di cose molto diverse mediante un
medesimo schema.



Questa è in parte una questione di economia; come i popoli primitivi, abbiamo la spiccata tendenza a dire:
‘Tutte queste cose, benché appaiano diverse, sono in realtà uguali’, invece di: ‘Tutte queste cose, benché
appaiano uguali, sono in realtà diverse’” (Ludwig Wittgenstein, Lezioni sui fondamenti della matematica,
Bollati Boringhieri, 1982, p. 17).

Che Wittgenstein s’intendesse poco di popoli primitivi è fuor di dubbio, ma di matematica ci capiva eccome.
E l’intuizione che qui fa al caso è quella relativa alla matematica come schema che si applica al prezzo di un
sacrificio, vale a dire la rimozione di ciò che differisce. La matematica, detto altrimenti, è miope alla
differenza perché cerca uno schema che aspira alla generalità. Solo l’astrazione dal differente permette il
salto, la sorpresa, l’impollinazione.

Ed è per questa ragione che, come si scriveva in apertura, la matematica ha la qualità dell’inesistenza: se il
mondo dei fenomeni reali è solo differenza, eliminare questa è innestarvi gradi di irrealtà. Che questa sia
operazione necessaria e proficua, persino bella, qui non si mette in dubbio (né potrei, perché il lavoro
dottorale mi diverrebbe un esercizio d’immaginazione fantascientifica). Ma che possa essere rilasciata a sé
stessa, senza che la filosofia intervenga con il recupero meticoloso della differenza, questo no. Ma qui da
tempo si è per le alleanze, per i feticci, per gli impasti di reale e irreale; sicché si studi la matematica, ma ci si
procuri al contempo gli strumenti per scovarne i sotterfugi. 

Se continuiamo a tenere vivo questo spazio è grazie a te. Anche un solo euro per noi significa molto.
Torna presto a leggerci e SOSTIENI DOPPIOZERO
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